Prevalence and resistance profile of Enterobacteriaceae producing extended spectrum Beta-Lactamases isolated from the laboratory of bacteriology and parasitology in National Public Health Laboratory of Ouagadougou

INTRODUCTION

The emergence and spread of multi-resistant bacterial strains pose enormous public health problems (Elhani, 2011; Strysko et al., 2016) that led the (World Health Organization, 2011) to dedicate the World Day against multi-resistant bacteria. Bacteria have developed enormous mechanisms to inhibit antibiotics action, thus making the treatment of infections with these bacteria very challenging complex (Arcilla et al., 2017; Ouédraogo et al., 2017). The expansion of this multi-resistance can be explained on several levels including: self-medication, the exchange of materials, generics between bacterial strains (Gilbert et al., 2010), modification of antibiotic targets, and production of inhibitory enzymes of antibiotics action (Ouédraogo et al., 2017).

Nowadays, Enterobacteriaceae producing ESBLs are less sensitive or even resistant to the majority of beta-lactams (Fursova et al., 2015). This family of antibiotics predominates in the therapy of human infections (Anago et al., 2015). According to the European Antibacterial Resistance Surveillance Network (EARS), in Europe, the resistance of Escherichia coli strains to third generation cephalosporin due to ESBLs production has increased from 85% to 100% in 2009 (Elhani, 2011).

In Burkina Faso, only a few studies regarding ESBLs-producing Enterobacteriaceae (ESBLs) have been conducted in health centres (Dabiré et al., 2013). For example, (Dabiré, 2011) that led the SBLs of tria ESBLs) est. y, materials, generics between bacterial strains (Gilbert et al., 2010), modification of antibiotic targets, and production of inhibitory enzymes of antibiotics action (Ouédraogo et al., 2010).
Table 1. Isolated and identified Enterobacteriaceae species by origin and frequency

<table>
<thead>
<tr>
<th>Germ</th>
<th>Stools</th>
<th>Urine</th>
<th>Pus</th>
<th>CVS</th>
<th>CSF</th>
<th>Total</th>
<th>Frequency(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>01</td>
<td>72</td>
<td>00</td>
<td>12</td>
<td>00</td>
<td>85</td>
<td>78.70</td>
</tr>
<tr>
<td>Klebsiella pneumonae</td>
<td>00</td>
<td>08</td>
<td>01</td>
<td>03</td>
<td>00</td>
<td>12</td>
<td>11.11</td>
</tr>
<tr>
<td>Klebsiella oxytoca</td>
<td>00</td>
<td>02</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>02</td>
<td>01.85</td>
</tr>
<tr>
<td>Klebsiella ornithinolytica</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>01</td>
<td>00</td>
<td>01</td>
<td>00.92</td>
</tr>
<tr>
<td>Proteus vulgaris</td>
<td>00</td>
<td>01</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>01</td>
<td>00.92</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>00</td>
<td>02</td>
<td>01</td>
<td>00</td>
<td>00</td>
<td>03</td>
<td>02.77</td>
</tr>
<tr>
<td>Enterobacter cloacae</td>
<td>00</td>
<td>03</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>03</td>
<td>02.77</td>
</tr>
<tr>
<td>Provideniastuarti</td>
<td>00</td>
<td>00</td>
<td>01</td>
<td>00</td>
<td>00</td>
<td>01</td>
<td>00.92</td>
</tr>
</tbody>
</table>

Legend: CVS: Cervico-Vaginal Secretions; CSF: Cerebro-Spinal Fluid

2014; Ouédraogo et al., 2016) were reported respectively 67% of ESBLs hospitalized patients in Charles De-Gaulle Pediatric among those 58% in hospitalized patients in Universities centres hospitals (Yalgado Ouédraogo, Souro Sanou, Charles De-Gaulle Pediatric). To the best of our knowledge, no studies have been conducted yet on non-hospitalized patients in Burkina Faso. The objective of this study was to determine the prevalence of Enterobacteriaceae producing ESBLs isolated from National Public Health Laboratory (NPHL) of Ouagadougou and their antibiotic resistance profile to antibiotics usually used to treat of Gram-negative bacilli infections.

MATERIALS AND METHODS

Samples, isolation and identification of Enterobacteriaceae

A total of 773 samples from non-hospitalized patients (267 stools, 326 urines, 70 cervico-vaginal secretions, 11 pus and 99 cerebrospinal fluid) were collected in LNPH (a reference centre of Burkina Faso in several areas such as biomedical analyses and food quality control) for isolation of Enterobacteriaceae on the agar Eosine Methylen Blue agar plates. The API 20E was used for the identification of Enterobacteriaceae isolated according to the manufacturer’s recommendation (Biomerieux, France).

Antibiotic susceptibility and ESBLs production

Antibiotic resistance was tested Muller Hunton (MH) by using an inoculum of Co MacFarland 0.5. Thus, twelve antibiotics including Amoxicillin (25 μg), Amoxicillin + Clavulanic acid (20/10 μg), Imipenem (10 μg), Ceftazidime (30 μg), Ceftriaxone (30 μg), Cefoxitin (30 μg), Gentamicin (15 μg), Tobramycin (10 μg), Ciprofloxacin (5 μg), Cotrimoxazole (25 μg), Nalidixic acid (30 μg), and Cefamandole (30 μg) were tested. The double synergy test according the recommendation of Company Antibiotic Committee French Microbiology (CA-SFM) 2013 using a combined action of Amoxicillin + Clavulanic and a third-generation cephalosporin was used for the detection of the phenotypic expression of ESBLs. The tests were carried out in Petri dishes containing six discs each of which Amoxicillin + Clavulanic was placed in the centre of one petri dishes. Two petri dishes were used for each inoculum and incubated at 37 °C for 24 hours. Inhibition diameter of the antibiotics was interpreted according to the CA-SFM (2013).

References strains used for double synergy test

Three reference strains (E. coli ATCC 25922, E. coli ATCC 35218, and K. pneumoniae ATCC 700603) were used as a control for the antibiotic susceptibility test sensitive and the production of E-SBL.

Statistical analysis

The data were analysed using Excel 2013.

RESULTS

Enterobacteriaceae identification

The cultures of 18 to 24 hours on specifics agar were allowed to identify with API 20E kit 108 Enterobacteriaceae from 145 bacterial strains, i.e. the rate of infection was 74.48%. These results were showed a clear predominance of Enterobacteriaceae in bacterial infections among pathological products received from LNPH. Table 1 shows the level of different strains in pathological products. Of the five types of pathological samples used in this study, Enterobacteriaceae pathogens had been isolated and identified from the stool, urine, pus and vaginal sampling.

Prevalence of Enterobacteriaceae producing beta-lactamases

Detection of ESBLs

After incubation during 18 to 24 hours, the antibiograms were carried out, the ESBLs phenotype was in the form of a
champagne cork between Amoxicillin + Clavulanic acid and one of the third-generation cephalosporins (Figure 1). In the present study, 6 of 108 Enterobacteriaceae or 5.55% isolates produced a ESBLs. Among the ESBL-producing Enterobacteriaceae species source were from three types of samples including, three in the urine, one in the pus and two in the cervico-vaginal secretions. ESBLs positives isolates 4.7% represented by the E. coli and 13.33% of Klebsiella spp. The other isolated Enterobacteriaceae were not ESBL producers.

Resistance profile of Enterobacteriaceae

Enterobacteriaceae showed high resistance to Amoxicillin (97.22%), Amoxicillin + Clavulanic acid (89.22%), and Cotrimoxazole (83.33%) low resistance to amino glycosides (Gentamicin and Tobramycin) and to third-generation cephalosporin and no resistance to Imipenem according to Table 2.

Resistance profile of ESBLs producing Enterobacteriaceae

All E-ESBLs had higher levels of resistance to penicillin and cephalosporin than all Enterobacteriaceae. Thus, the resistance profile of the E-ESBLs was identified as the following 100% to Amoxicillin, Ceftazidime, Amoxicillin + Clavulanic acid, Cotrimoxazole, Ceftriaxone, Cefoxitin; 83.33% to Ciprofloxacin, Nalidixic Acid; and 33.33% to Tobramycin and Gentamicin but 100% of sensibility to

Table 2. Resistance profile of each type of antibiotic Enterobacteriaceae strain

<table>
<thead>
<tr>
<th></th>
<th>NA</th>
<th>IMI</th>
<th>GM</th>
<th>TOB</th>
<th>FOX</th>
<th>MA</th>
<th>SXT</th>
<th>CAZ</th>
<th>CRO</th>
<th>AMC</th>
<th>AUG</th>
<th>CIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli (n=85)</td>
<td>54.11%</td>
<td>0%</td>
<td>28.23%</td>
<td>31.76%</td>
<td>21.17%</td>
<td>47.05%</td>
<td>84.70%</td>
<td>23.52%</td>
<td>40%</td>
<td>96.47%</td>
<td>89.41%</td>
<td>56.47%</td>
</tr>
<tr>
<td>K. pneu (n=12)</td>
<td>16.66%</td>
<td>0%</td>
<td>0%</td>
<td>16.66%</td>
<td>16.66%</td>
<td>83.33%</td>
<td>16.66%</td>
<td>16.66%</td>
<td>100%</td>
<td>83.33%</td>
<td>8.33%</td>
<td></td>
</tr>
<tr>
<td>K. oxyt (n=02)</td>
<td>50%</td>
<td>0%</td>
<td>50%</td>
<td>50%</td>
<td>100%</td>
<td>50%</td>
<td>50%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>K. orni (n=01)</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>P. mira (n=01)</td>
<td>33.33%</td>
<td>33.33%</td>
<td>33.33%</td>
<td>33.33%</td>
<td>33.33%</td>
<td>66.66%</td>
<td>33.33%</td>
<td>33.33%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>33.33%</td>
</tr>
<tr>
<td>P. vulg (n=03)</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>E. cloa (n=03)</td>
<td>33.33%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>100%</td>
<td>67%</td>
<td>66.66%</td>
<td>33.33%</td>
<td>33.33%</td>
<td>100%</td>
<td>33.33%</td>
</tr>
<tr>
<td>Pr. stu (n=01)</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Set of isolates</td>
<td>48.14%</td>
<td>0%</td>
<td>23.14%</td>
<td>23.14%</td>
<td>28.70%</td>
<td>25%</td>
<td>44.44%</td>
<td>83.33%</td>
<td>24.07%</td>
<td>37.96%</td>
<td>97.22%</td>
<td>89.81%</td>
</tr>
</tbody>
</table>

Legend: E. coli: Escherichia coli; K. pneu: Klebsiella pneumoniae; K. oxyt: Klebsiella oxytoca; K. orni: Klebsiella ornithinolytica; P. mira: Proteus mirabilis; P. vulg: Proteus vulgaris; E. cloa: Enterobacter cloacae; Pr. stu: Providencia stuartii; NA: Nalidixic Acid; IMI: Imipenem; GM: Gentamicin; TOB: Tobramycin; FOX: Cefoxitin; MA: Cefamandol; SXT: Cotrimoxazole; CAZ: Ceftazidime; CRO: Ceftriaxone; AMC: Amoxicillin; AUG: Augmentin (Amoxicillin + Clavulanic Acid); CIP: Ciprofloxacin
Imipenem (Figure 2).

DISCUSSION

E. coli (78.7%) and *Klebsiella* spp (13.9%) were the predominant strains isolated from stool, urine, pus and vaginal samples. Similar findings had been highlighted in a study conducted in Morocco on hospitalized patients suffering from chronic renal failure (Chemlal et al., 2015). They incriminated *E. coli* and *Klebsiella* spp. in 58.3% and 29.2% of the cases (Chemlal et al., 2015). *Enterobacteriaceae* are part of human commensal flora. However, some species, including *E. coli* and *Klebsiella* spp. can evolve as opportunistic pathogens in case of weak immunity and poor lifestyle, including hygiene practices, dietary habits and self-medication (Oudraogo et al., 2017; Harris et al., 2015; Sansonetti, 1987).

Appreciable number of *Enterobacteriaceae* (5.55%) were ESBLs producing bacteria. In contrast, Dabiré (2014) and Ouédraogo et al. (2016) reported 58% and 67.22%, respectively, of ESBLs from hospitalized patient in Burkina Faso. The differences could be explained by the category of subjects in these studies and their exposure to antibiotic-resistant strains. However, their presence in the community would be due to a spread of strains from hospitals. The problem of ESBLs bacteria in Africa health centres has been addressed by several authors and the situation seems to be generalized because several studies have also mentioned the presence of ESBLs (Oduro-Mensah et al., 2016; Anago et al., 2015; Beyene et al., 2014; Newire et al., 2013). The level of resistance of *Enterobacteriaceae* becoming more worrying. This has been highlighted in many investigations in hospitals (Anago et al., 2015, 35.5%; Oduro-Mensah et al., 2016, 37.96%; Tshilumbu, 2006, 17.8%; and Andrianarivelo et al., 2010, 50%). However, the spread of ESBLs among the populations could be explained by a deplorable level of health security hygiene. Indeed, the phenomenon of resistance in *Enterobacteriaceae* could be explained firstly by the production of inhibitory enzymes of antibiotics, secondly by changing the targets of antibiotics and finally by natural resistance (Muylaert et al., 2012; Lawrence et al., 2013; Newire et al., 2013). Although the resistance profile of all *Enterobacteriaceae* is increasingly worrying, however, that specific to ESBLs remains to be desired.

All *Enterobacteriaceae* in this study were resistant to most antibiotics used. Anago et al. (2015) found also that their strains of *E. coli* showed resistance phenotypes amoxicillin (92.8%), ampicillin (94%), trimethoprim/sulfamethoxazole (85.7%), and imipenem (03.6%). The high levels of resistance to beta-lactam are due to the ability of the bacteria to produce the enzymes (ESBLs) to hydrolyse the antibiotics (Day et al., 2019). This
hypothesis has been shared by several other authors (Dabiré, 2014; Ma et al., 2013; Lyimo et al., 2016; Mnif et al., 2013; Shi et al., 2015; Mshana et al., 2016; Oduro-Mensah et al., 2016).

Moreover, strains producers of ESBLs were more resistance to the same antibiotics. Indeed, ESBLs is one of the main factors of resistance to Enterobacteriaceae (Paterson et al., 2005; Fukuchi et al., 2016). This had been also highlighted in France where the prevalence of 38% of third-generation cephalosporin-resistant Enterobacteriaceae had been reported (Thiolet et al., 2016). In addition, the increasing prevalence of the resistance of ESBLs producing Enterobacteriaceae to third-generation of cephalosporins has been reported in several hospitals (Dabiré et al., 2013; Harris et al., 2015; Durrmeyer et al., 2012). For the first time, we reported the variation of prevalence in antibiotic resistance of Enterobacteriaceae and their ESBLs production at a non-hospital centre (LNSP) in Burkina Faso.

CONCLUSION

The study showed a predominance of Enterobacteriaceae in urinary infections, vaginal infections and pus. Isolated bacteria showed very high levels of resistance to all antibiotics used, except imipenem. However, some strains showed resistance to aminoglycosides (Gentamicin and Tobramycin). The use of the technique called “double synergy test” has allowed better detection of ESBLs. The prevalence of Enterobacteriaceae producers of ESBLs (5.55%) among patients from the community indicated the resistance spreading from hospital to general population. In light of the present investigations, there is no doubt that ESBLs play a crucial role in bacterial resistance.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this manuscript.

REFERENCES

https://orbi.uleg.be/bitstream/2268/168957/1/R%C3%A9sistances%20bact%C3%A9riennes%20contagieuses.pdf

https://cmr.asm.org/content/cmr/18/4/657.full.pdf

